当前位置: 首页 > news >正文

wordpress加qq和微信插件下载百度搜索引擎优化方案

wordpress加qq和微信插件下载,百度搜索引擎优化方案,南宁做网站比较好的公司有哪些,北京地铁建设管理公司网站一、简介 本文介绍了蒙特卡洛积分算法的基本原理和其误差计算。 二、蒙特卡洛积分介绍 1. 介绍 蒙特卡洛积分算法是一种数值积分算法,用于对复杂函数进行积分。 例如,对于目标积分函数: ∫ a b f ( x ) d x (1) \int_{a}^{b}f(x)\rm{d}x…

一、简介

本文介绍了蒙特卡洛积分算法的基本原理和其误差计算。

二、蒙特卡洛积分介绍

1. 介绍

蒙特卡洛积分算法是一种数值积分算法,用于对复杂函数进行积分。
例如,对于目标积分函数:
∫ a b f ( x ) d x (1) \int_{a}^{b}f(x)\rm{d}x \tag{1} abf(x)dx(1)
其中 f ( x ) f(x) f(x)很复杂,无法找到解析解。我们可以在 f ( x ) f(x) f(x)的定义域 [ a , b ] [a,b] [a,b]上按照任意的概率密度函数 p ( x ) p(x) p(x)进行采样。并统计采样的随机变量的样本期望:
F N = 1 N ∑ i = 1 N f ( x i ) p ( x i ) (2) F_N = \frac{1}{N}\sum_{i=1}^{N}\frac{f(x_{i})}{p(x_{i})} \tag{2} FN=N1i=1Np(xi)f(xi)(2)
可以保证:
E ( F N ) = ∫ a b f ( x ) d x (3) E(F_N)=\int_{a}^{b}f(x)\rm{d}x \tag{3} E(FN)=abf(x)dx(3)

2. 证明

下面证明公式(3)的正确性:
E ( F N ) = E ( 1 N ∑ i = 1 N f ( x i ) p ( x i ) ) = 1 N ∑ i = 1 i = N E ( f ( x i ) p ( x i ) ) E(F_N) = E(\frac{1}{N}\sum_{i=1}^{N}\frac{f(x_{i})}{p(x_{i})}) \\ =\frac{1}{N}\sum_{i=1}^{i=N}E(\frac{f(x_i)}{p(x_{i})}) E(FN)=E(N1i=1Np(xi)f(xi))=N1i=1i=NE(p(xi)f(xi))
我们令 g ( x ) = f ( x ) p ( x ) g(x)=\frac{f(x)}{p(x)} g(x)=p(x)f(x),那么
E ( F N ) = 1 N ∑ i = 1 i = N E ( g ( x ) ) = 1 N ∗ N ∗ ∫ g ( x ) ∗ p ( x ) d x = ∫ g ( x ) ∗ p ( x ) d x = ∫ f ( x ) d x (4) E(F_N)=\frac{1}{N}\sum_{i=1}^{i=N}E(g(x)) \\ =\frac{1}{N}*N* \int_{}^{}g(x)*p(x){\rm{d}x} \\ = \int{g(x)*p(x)}{\rm{d}}x \\ =\int{f(x)}{\rm{d}x} \tag{4} E(FN)=N1i=1i=NE(g(x))=N1Ng(x)p(x)dx=g(x)p(x)dx=f(x)dx(4)
求证得证。

三、蒙特卡洛积分方差

蒙特卡洛积分算法的收敛程度可以适用其方差(标准差)表示。若其方差收敛速度很快,说明该算法可以适用较少的采样值,得到较高的积分精度,反则反之。下面对蒙特卡积分算法的方差和标准差进行计算。
下面计算蒙特卡洛积分算法的方差:
δ 2 ( F N ) = δ 2 ( 1 N ∗ ∑ i = 1 1 = N ( f ( x ) p ( x ) ) ) (5) \delta^{2}(F_N) = \delta^{2}(\frac{1}{N}*\sum_{i=1}^{1=N}(\frac{f(x)}{p(x)})) \tag{5} δ2(FN)=δ2(N1i=11=N(p(x)f(x)))(5)
根据方差的性质:
δ 2 ( c ∗ X ) = c 2 ∗ δ 2 ( X ) δ 2 ( a ∗ X + b ∗ Y ) = a 2 δ 2 ( X ) + b 2 δ 2 ( Y ) + 2 a b ∗ C O V ( X , Y ) (6) \delta^{2}(c*X) = c^{2}*\delta^{2}(X) \\ \delta^{2}(a*X+b*Y)=a^2\delta^{2}(X)+b^2\delta^{2}(Y)+2ab*COV(X,Y) \tag{6} δ2(cX)=c2δ2(X)δ2(aX+bY)=a2δ2(X)+b2δ2(Y)+2abCOV(X,Y)(6)
又因为采样的随机变量 x i x_i xi相互独立,因此:
δ 2 ( F N ) = δ 2 ( 1 N ∗ ∑ i = 1 1 = N ( f ( x ) p ( x ) ) ) = 1 N 2 ∗ ∑ i = 1 i = N δ 2 ( f ( x ) p ( x ) ) = 1 N ∗ δ 2 ( f ( x ) p ( x ) ) (7) \delta^{2}(F_N) = \delta^{2}(\frac{1}{N}*\sum_{i=1}^{1=N}(\frac{f(x)}{p(x)})) \\ =\frac{1}{N^2}*\sum_{i=1}^{i=N}\delta^{2}(\frac{f(x)}{p(x)}) \\ =\frac{1}{N}*\delta^{2}(\frac{f(x)}{p(x)}) \tag{7} δ2(FN)=δ2(N1i=11=N(p(x)f(x)))=N21i=1i=Nδ2(p(x)f(x))=N1δ2(p(x)f(x))(7)
工具公式(7)可知,蒙特卡罗积分方法的方差与采样数 N N N成反比,与 δ 2 ( f ( x ) p ( x ) ) \delta^{2}(\frac{f(x)}{p(x)}) δ2(p(x)f(x))成正比。
为了得到更为准确的结果,一方面我们可以增加采样数,即增大 N N N
另一方面我们可以尽可能地令 δ 2 ( f ( x ) p ( x ) ) \delta^{2}(\frac{f(x)}{p(x)}) δ2(p(x)f(x))小一些,由于 f ( x ) f(x) f(x)是我们待求的积分函数,无法进行修改,因此我们可以寻找一个概率密度函数 p ( x ) p(x) p(x),使得 f ( x ) p ( x ) \frac{f(x)}{p(x)} p(x)f(x)的方差尽可能的小。

四、蒙特卡洛积分与差分积分

蒙特卡洛积分和差分积分都是数值积分方法。
与差分积分方法相比,蒙特卡洛方法的计算复杂度与维度无关。它通过随机采样的方式估计积分值,即使维度增加,样本点的生成和积分估计的计算量并不会指数级增长。这意味着蒙特卡洛方法在高维问题中仍然保持高效,具有稳定的性能。
而在差分积分方法中,每增加一个维度,划分的区域数量会大幅增加,使得差分积分方法的计算复杂度呈指数级增长。

http://www.skylitedrivein.com/news/1149.html

相关文章:

  • 淘乐惠网站怎么做下载优化大师并安装
  • 淄博网站建设公司有多少家百度关键词优化师
  • 怎么创建自己的网站关键词seo排名优化
  • 动态网站制作报价营销方法有哪几种
  • 做个人网站要多少钱新网站多久会被百度收录
  • 找个可以直接看的网站网站推广软件哪个好
  • 企业网站推广技巧有哪些网站模板之家免费下载
  • 辽宁建设厅查询网站线上推广渠道主要有哪些
  • 做淘宝客网站制作教程视频百度快速收录权限域名
  • 高德地图在海外能用吗网站优化效果
  • 怎么备案网站空间产品软文案例
  • 编程软件下载安装seo代码优化有哪些方法
  • 河南建设监理协会网站电话google优化推广
  • 莱芜官网曹操博客seo
  • 在家做兼职哪个网站靠谱推广app赚佣金
  • 万维网站续费多少一年上海疫情最新数据
  • wordpress建两个网站怎么免费创建网站
  • 巨蟹座适合网站建设吗好的建站网站
  • 自己做网站的流程视频成都百度seo优化公司
  • 学软件开发好还是网站开发好网络营销整合营销
  • 哈尔滨网站空间2022年免费云服务器
  • 泰州高端网站建设如何收费竞价推广开户公司
  • c做网站网站为什么要做seo
  • 安丘网站建设安徽网站推广优化
  • 什么网站做二维码比较好深圳百度
  • 天津做网站公司网络营销怎么做
  • 成全视频免费观看在线看wwseo资讯网
  • 做网站都需要哪些知识淘宝一个关键词要刷多久
  • 织梦源码官网苏州网络推广seo服务
  • 深圳做分销网站建设厦门网络推广公司