当前位置: 首页 > news >正文

整站网站优化费用优化内容

整站网站优化费用,优化内容,永久网站建设,网站bp怎么做有大量二维矩阵作为样本,为连续数据。数据具有空间连续性,因此用卷积网络,通过dcgan生成二维矩阵。因为是连续变量,因此损失采用nn.MSELoss()。 import torch import torch.nn as nn import torch.optim as optim import numpy a…

有大量二维矩阵作为样本,为连续数据。数据具有空间连续性,因此用卷积网络,通过dcgan生成二维矩阵。因为是连续变量,因此损失采用nn.MSELoss()。

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from DemDataset import create_netCDF_Dem_trainLoader
import torchvision
from torch.utils.tensorboard import SummaryWriterbatch_size=16
#load data
dataloader = create_netCDF_Dem_trainLoader(batch_size)# Generator with Conv2D structure
class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.model = nn.Sequential(nn.ConvTranspose2d(100, 512, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(512),nn.ReLU(),nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(512),nn.ReLU(),nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(256),nn.ReLU(),nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(128),nn.ReLU(),nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(64),nn.ReLU(),nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(32),nn.ReLU(),nn.ConvTranspose2d(32, 1, kernel_size=4, stride=2, padding=1),nn.Tanh())def forward(self, z):img = self.model(z)return img# Discriminator with Conv2D structure
class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.model = nn.Sequential(nn.Conv2d(1, 32, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2),nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2),nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2),nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2),nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2),nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2),nn.Conv2d(512, 1, kernel_size=4, stride=2, padding=1),)def forward(self, img):validity = self.model(img)return validity# Initialize GAN components
generator = Generator()
discriminator = Discriminator()# Define loss function and optimizers
criterion = nn.MSELoss()
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator.to(device)
discriminator.to(device)writer_real = SummaryWriter(f"logs/real")
writer_fake = SummaryWriter(f"logs/fake")
step = 0# Training loop
num_epochs = 200
for epoch in range(num_epochs):for batch_idx, real_data in enumerate(dataloader):real_data = real_data.to(device)# Train Discriminatoroptimizer_D.zero_grad()real_labels = torch.ones(real_data.size(0), 1).to(device)fake_labels = torch.zeros(real_data.size(0), 1).to(device)z = torch.randn(real_data.size(0), 100, 1, 1).to(device)fake_data = generator(z)real_pred = discriminator(real_data)fake_pred = discriminator(fake_data.detach())d_loss_real = criterion(real_pred, real_labels)d_loss_fake = criterion(fake_pred, fake_labels)d_loss = d_loss_real + d_loss_faked_loss.backward()optimizer_D.step()# Train Generatoroptimizer_G.zero_grad()z = torch.randn(real_data.size(0), 100, 1, 1).to(device)fake_data = generator(z)fake_pred = discriminator(fake_data)g_loss = criterion(fake_pred, real_labels)g_loss.backward()optimizer_G.step()# Print progressif batch_idx % 100 == 0:print(f"[Epoch {epoch}/{num_epochs}] [Batch {batch_idx}/{len(dataloader)}] [D loss: {d_loss.item():.4f}] [G loss: {g_loss.item():.4f}]")with torch.no_grad():img_grid_real = torchvision.utils.make_grid(fake_data#, normalize=True,)img_grid_fake = torchvision.utils.make_grid(real_data#, normalize=True)writer_fake.add_image("fake_img", img_grid_fake, global_step=step)writer_real.add_image("real_img", img_grid_real, global_step=step)step += 1# After training, you can generate a 2D array by sampling from the generator
z = torch.randn(1, 100, 1, 1).to(device)
generated_array = generator(z)

http://www.skylitedrivein.com/news/557.html

相关文章:

  • 做一个静态网站要多少钱衡水seo培训
  • 新人如何做自己的网站河池网站seo
  • wordpress极致性能信息流优化师培训
  • 分销商城网站建设网站推广的主要方式
  • 破解版软件下载网站营销策略ppt
  • 网站设计与网页制作岗位招聘信息兰州疫情最新情况
  • 网站要做手机版怎么做的百度推广客服投诉电话
  • 一个网站建设域名的构思怎么自己开发网站
  • 微信公众号网站自己做导航条处理器优化软件
  • 流程平台提升seo排名的方法
  • 为什么要做官方网站长春seo公司哪家好
  • 做网站引流到天猫重庆网站关键词排名
  • 网站不备案可以使用么制作一个网页的步骤
  • 帮别人做网站多少钱网络营销有哪些推广平台
  • 东莞模块网站建设方案google怎么推广
  • 毕业室内设计代做网站广州seo工作
  • 做asp网站的步骤网站关键词优化怎么做的
  • 枣庄建设网站长春刚刚最新消息今天
  • 平台b2c网站企业网站推广方案设计毕业设计
  • wordpress 评论加图片seo项目分析
  • 大型新型网站整站优化加盟
  • 如何做微网站seo顾问服务四川
  • 招代理网站怎么做关键词排名怎样
  • 深圳做网页的网站sem是什么牌子
  • 网站建设 网页无线网络优化
  • 北京网站建设开发公司学网络运营在哪里学比较好
  • wordpress theme cms石家庄关键词优化报价
  • 在县城怎么做网站公司百度网站域名注册
  • 如何做时时彩网站东莞网络营销平台
  • 网站付费推广竞价网络推广引流是做什么的